SoMo: Fast and Accurate Simulations of Continuum Robots
in Complex Environments

Moritz A. Graule!*, Clark B. Teeple'*, Thomas P. McCarthy!,
Grace R. Kim!, Randall C. St. Louis!, and Robert J. Wood!

Abstract— Engineers and scientists often rely on their intu-
ition and experience when designing soft robotic systems. The
development of performant controllers and motion plans for
these systems commonly requires time-consuming iterations on
hardware. We present the SoMo (Soft Motion) toolkit, a soft-
ware framework that makes it easy to instantiate and control
typical continuum manipulators in an accurate physics sim-
ulator. SoMo introduces a standardized and human-readable
description format for continuum manipulators. It leverages
this description format and the Bullet physics engine to enable
fast and accurate simulations of soft and soft-rigid hybrid
robots in environments with complex contact interactions. This
allows users to vary design and control parameters across
simulations with minimal effort. We compare the capabilities of
SoMo to other physics simulators and highlight the benefits and
accuracy of SoMo by demonstrating the agreement between
simulation and real-world experiments on several examples;
these include an in-hand manipulation task with continuum
fingers, an automated exploration of how to design soft fingers
for precision grasping, and a brief snake locomotion study.
Overall, SoMo provides an accessible way for designers of
soft robotic hardware and control systems to gain access to
a simulation-accelerated workflow.

I. INTRODUCTION

Soft robots are useful for a variety of applications: from
resilient locomotion [1], [2], to gentle grasping [3], [4], [5],
[6], to whole-arm manipulation [2], [7], [8], soft robots can
provide increased adaptability in the presence of uncertainty
in the real world [9]. The dynamics of soft robots, however,
are notoriously difficult to model on a physical level due to
material and structural compliance. For these reasons, most
soft-robotic hardware is controlled using heuristic actuator
input trajectories [1], [6], [10] or utilizes simplified dynamic
models that are tricky to implement in more-generalized
environments [8], [7]. Consequently, the process of designing
soft-bodied actuators and their controllers often relies heavily
on the intuition and expertise of engineers.
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Fig. 1. Composite figure of a soft robotic hand manipulating a Rubik’s
cube in a hardware experiment (left) and in a simulation that leverages
SoMo (right).

On the other hand, the development of traditional robots
relies heavily on simulations during design and the evalu-
ation of controllers, control strategies, planning algorithms
[11], [12], [13], and learned control policies [14], [I5].
A wide variety of physics-based simulation tools are used
in traditional robotics such as Gazebo [16], PyBullet [17],
Webots [18], and MuJoCo [19]. These general-purpose tools
are capable of quickly simulating full environments with
multiple robots and complex interactions between robots and
their environment. These simulators typically assume that all
robots and objects are rigid, making it difficult to model the
continuous deformation of soft robots.

A comparable simulation-accelerated development work-
flow is mostly missing for soft robots. One of the main
reasons for this is the lack of standardized and generalizable
tools that allow engineers to accurately simulate soft robotic
systems in the presence of robot-robot and robot-environment
interactions. Consequently, soft roboticists often rely on
customized, project-specific physics engines to leverage sim-
ulations in their development process [20], [21]. In this work,
we present our Soft Motion framework (SoMo): a stan-
dardized framework for simulating continuum robots using
an off-the-shelf rigid-body physics engine (Bullet/PyBullet).
The key features of this framework are: 1) simulations are
fast to set up even for complex environments with soft-
rigid hybrid robots; 2) the code is open-source to facilitate
community-driven development; and 3) it is straightforward
to accurately calibrate simulations, such that they closely
align with experiments in hardware.



II. RELATED WORK

A number of rigid-body robot simulators exist; they are
well-suited for the simulation of complex rigid-bodied en-
vironments, and many of them have a wide and active
user base. However, building and controlling continuum
manipulators in these simulators using a rigid-body approxi-
mation typically requires a user to generate and control many
different joints, which is time-consuming to set up.

Motivated by the strong benefit of simulations in the de-
velopment of hardware and controllers for traditional robots,
several frameworks have been proposed for the design and
simulation of continuum robots at different levels of system
abstractions. These frameworks make use of full FEA sim-
ulations [22], [21], voxel- or particle-based approximations
[23], [24], or approximations of slender continuum robots as
bending beams [25], [26]. While some of these frameworks
have been shown to achieve high accuracy and simulation
speeds approaching real-time [25], [22], [26], [24], they are
often built with a specific use case in mind. Using these
frameworks to simulate custom soft robots in varied envi-
ronments (e.g., environments that include additional objects
or traditional rigid-body dynamical systems) is often not
straightforward and requires significant effort. Furthermore,
defining new soft robotic systems in these simulators typi-
cally requires in-depth knowledge of the respective software
toolkit.

Table I provides an overview of the capabilities of various
existing simulators for rigid and soft robots, highlighting
how a simulation framework that streamlines the definition
of continuum robots in different environments would enable
faster iterations on designs and control policies for contin-
uum manipulators in soft-rigid hybrid systems or complex
environments. A rigorous comparison of simulation accuracy,
speed, and computation requirements for various robot sim-
ulations tools is outside the scope of this paper. Furthermore,
the outcome of such a comparison will heavily depend on
the hardware employed and the specifics of the simulated
systems.

III. FRAMEWORK DEFINITION

The SoMo framework couples a discretized rigid-body
model of soft actuators (shown in Figure 2) with an easy-
to-use Python module to build actuators and manipulators
from user-specified descriptions defined in json or yaml files,
or Python dictionaries. SoMo automatically builds rigid-link
approximations of continuum manipulators using a standard
format (universal robot description file, or URDF), and
imports them into the PyBullet physics engine [17]. During
a simulation run, the framework handles the individual joint
springs and actuation torques for all joints in the simulated
manipulators, such that individual actuators can be addressed
with a single control input for each of their actuated axes.
The restoring torques for passive axes of compliance are
updated automatically at each simulation step. We also
provide a streamlined method to calibrate model parame-
ters to match real hardware systems characterized with a
few simple measurements. Altogether, SoMo simplifies the

Control Inputs: w1, uz, t3, ug

SoMo Manipulator | |T1,; = Ui + Tp1,i

) TN
Uy (5] U

SoMo
A ctuator;

Rigid Base

T1,0
C) SoMo Actuator

a)

SoMo Link
d-

Stadium

d) Sphere Cube Cylinder  Capsule Links connected by joint

Fig. 2. The SoMo framework represents complex assemblies of continuum
robots using a modular rigid-body approximation that matches the number
of control inputs as the real system. a) For example, a soft gripper with
two fingers, each with two independent segments has four control inputs. b)
In SoMo, this gripper is represented as an assembly with a rigid base and
two continuum manipulators. Each manipulator is made up of two actuators
with one control input each. ¢) Each actuator is represented as a serial chain
of rigid bodies connected with spring-loaded joints, all responding to the
single actuation input, u;. d) Several link geometries are available.

setup and simulation process for soft manipulators in varied
environments. A detailed documentation of SoMo and a
collection of user-friendly examples can be found on the
project’s GitHub page [29].

A. Actuator Definition

Modelling soft actuators as discretized rigid-link serial
manipulators with spring-loaded joints allows us to take
advantage of rigid-body physics engines. In SoMo, each
actuator is split into several discrete segments with revolute
or prismatic joints between them. Joints are defined to have
stiffness and damping; can be defined along any axis; and can
be offset along any axis relative to links. The user can choose
from a wide selection of link shapes when specifying a robot
in SoMo, including spherical, cylindrical, cuboid, capsule-
shaped links, and right prisms with a stadium-shaped base.
Actuators can then be chained together in series to create
manipulators, such as dexterous soft fingers, continuum arms,
or snake-inspired robots. Manipulators can be specified to
have additional features at their ends, such as base links
or fingertips. Manipulators can be constrained at the base,
or allowed to move around freely. Manipulators can also
be grouped into manipulator assemblies, which facilitate the
construction and control of complex soft-rigid hybrid robot
systems, such as a traditional robot arm with a soft gripper
as the end effector.

In SoMo, the geometry and dynamics of continuum
manipulators, actuators, joints, and links are prescribed in
human-readable definitions (either json or yaml files, or
Python dictionaries), which makes it easy to quickly set up
and adjust simulated environments. Actuation torques can be
applied to continuum manipulators and continuum manipu-
lator assemblies with one line of code in the simulation loop.



TABLE I
OVERVIEW OF POPULAR ROBOT SIMULATION FRAMEWORKS

Framework Modeling Physics Installation User interface URDF* Rigid Continuum Rigid-soft Open Ref.
approach model robots™ robots” hybrid source
complexity robots”

Gazebo rigid-body low Install ROS GUI, ROS (C++ [16]
physics & compile or Python) v v X X v

MuJoCo rigid-body low Executable C++, Python [19]
physics v v X X X

PyBullet/Bullet  rigid-body low Python pip C++, Python [17]
physics v v X X v

Webots rigid-body low Executable C, C++, Java, [18]
physics Python, MATLAB X v X X v

Elastica Cosserat rods medium- Python pip C++, Python [27]
high X X v X v

Huang et al. Cosserat rods medium- Compile C++ [26]
(2020) high source X X v X X

ChainQueen Particle-grid high Compile Python, Taichi [24]
hybrid source X X v X v

SOFA FEA high Executable GUI, C++, Python [28]
X v v v v

PyBullet + rigid-body low Python pip Python

SoMo physics v v v v v

B. Calibration

SoMo requires similar parameter tuning as the underlying
PyBullet physics engine (specifically, tuning of friction,
world scale, time step). In addition, the bending stiffness
and damping need to be specified for each actuator. The
following provides guidelines on this tuning process.

1) Bending stiffness: We present a standardized calibra-
tion method to relate real-world actuator deformation to
joint angles in the simulated actuators that relies on simple
physical properties that are easy to measure. Using a mea-
surement of the linear bending stiffness of the actuators in
two directions, we can approximate the appropriate simulated
joint stiffnesses such that the tip deflection of each actuator
segment matches the real-world deflection profile of the actu-
ator. We then use blocked force measurements to estimate the
equivalent simulated actuation torque required to achieve the
same internal actuation moment during pressurization as the
physical system. While a data-driven calibration procedure
(similar to [30]) could be used in place of this calibration
procedure, a full motion tracking system would be required.
Our calibration procedure achieves reasonable accuracy us-
ing only a few easily-measurable physical parameters.

For an actuator split evenly into N segments, we begin
with definitions and assumptions. Under the assumption of
small deformations, the deflection & of a cantilever beam as
a function of position x along the beam can be computed as
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where &y is the deflection at the tip, and L is the length of the
beam. In addition, the bending moment M, of a cantilever
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beam with a tip load F;), as a function of x along the beam
is defined as
My, = Fip(L—x), 2

and the linear bending stiffness K of a cantilever beam at
the tip as
Ky =i, G)
o
Finally, we assume the calibration takes place over small
deformations and angles, so sin(6) = 6.
We first find the deflection at the tip of the first segment

due to a load at the actuator’s tip to be:
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For the first segment with length % and deflection J; we
define a rotational spring constant kj that achieves an angle
0, when a torque 7; is applied to the respective joint:

T
Kl = — 5
=g, 4)
Solving geometrically for 0; and using the small angle
approximation, we obtain:

. 8§ & N&
0, ~ sin(6;) = L% == Tl (6)
N

The bending moment withheld by this first link (i.e., the
moment at x = 0), 7, is assumed to be:

71 = Fip(L—0) = F;pL (7N
Finally, we can substitute (6) and (7) into (5) to obtain:
T1 1 2

2N T 2NZ



In addition to joint stiffnesses, we must determine the
joint torques that are to be applied to drive the actuators.
For fluid-driven soft robotic systems, we can use blocked-
force measurements at various pressures to obtain estimates
of the actuation torques at pressures of interest. During a
blocked force measurement, we assume that the forces that
are produced at the actuator tip balance out the internal
actuation moment. Given this assumption, we can use

My = FpL 9)

to approximate the actuation moment applied at each pres-
sure. Additional details on calibration and examples that
facilitate it can be found on the SoMo Github page [29].

2) Damping: SoMo simulates flexible joints by control-
ling joint torques so that they are a function of the joint
angle and the approximated joint stiffness. The rate at which
these joint torques are controlled can be limited using the
‘joint_control_limit_force’ property of the joint definitions.
We empirically determined that setting this limit between
0.15 and 1.5 results in numerically stable and realistic
simulations and that varying it within that range does not
significantly affect the simulation results.

3) Friction: PyBullet defines a (non-physical) friction
value for each object. The traditional friction coefficient
between two objects is then computed as the product of
the objects’ friction values. To obtain realistic simulations
in SoMo, one can either manually tune the objects’ friction
values, or set them such that the deviation between measured
(physical) and calculated friction coefficients for all objects
of interest is minimized.

4) Scaling: In some cases, it may be beneficial to scale
the world in PyBullet (and therefore, SoMo) for numerical
stability (Bullet was originally designed for dimensions and
velocities between 0.05 and 10). To scale the world by a
factor X, the following properties should be scaled by a factor
of X: collision shapes about origin, positions, linear (but not
angular) velocities, linear [Sleep Threshold], gravity, user-
defined impulses, and inertias (if not computed by Bullet).
Torques need to be scaled by a factor of X2. Damping and
angular velocity do not need to be changed.

IV. ACCURATE SIMULATION OF CONTINUUM
MANIPULATORS IN COMPLEX ENVIRONMENTS

We showcase the capability and accuracy of SoMo and
demonstrate the calibration workflow outlined above on a
challenging in-hand manipulation task with a soft robotic
hand. In this task, a cube is rotated around its axis by four
dexterous fingers with two independently controlled degrees
of freedom. To achieve large object rotations in this setup,
the fingers need to repeatedly make and break contact with
the manipulated object.

The hardware setup for this experiment is described and
characterized in detail in [10]; in short, the fingers are 0.1m
long, achieve a blocked force (as measured at the fingertip)
of 0.75N when actuated with a pressure of 100kPa, and the
actuation pressures are between 0 and 240kPa. We scaled
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Fig. 3.  Actuator-level validation of calibrated SoMo simulations. The
fingers were characterized using a blocked force measurement (inset, top).
We replicated this setup in simulation, measuring the normal force between
the finger tip and a rigid cube (inset, bottom). The experimental and
simulated actuation-force curves show a good agreement between hardware
and simulations (RMSE = 0.28N).

the world by a factor of 20 and calibrated the SoMo sim-
ulation as outlined above. We then validated the simulation
accuracy at the actuator-level by replicating the blocked-force
characterization experiments in simulation. The results of this
study, shown in Figure 3, confirm that we can obtain accurate
actuator-level calibration.

Having confirmed that simulations closely match hardware
experiments on actuator-level tasks, we show that SoMo
simulations with calibrated finger definitions produce similar
behaviour to real hardware for a complex in-hand manip-
ulation task. Using the four-fingered hand developed in
[10], we implemented an experimentally-determined finger
gait that achieves continuous rotation about the object’s z-
axis. This finger gait is a combination of rotation primitives
performed by alternating pairs of fingers on a target object
which enables the hand to rotate the object well beyond the
dexterous workspace of the fingers.

The finger gait used in [10] is defined in terms of four sets
of two pneumatic pressure signals that differentially actuate
the soft fingers. These pressure signals must be converted to
equivalent orthogonal actuation signals for the simulations.
We use a simple linear map achieve this. We calculate
the real actuation torques achieved by these soft fingers at
each pressure in the trajectory by utilizing the calibration
procedure for actuation torques described above. This results
in a linear map from real differential actuation pressures
Ddifr to simulated orthogonal actuation torques T:

= ; (10)

Torasp [ } Pdiff1 + Pdiff2
= (W1 wa

Tside Pdiff1 — Pdiff2
where w; = 1.0 and wy, = 3.25.

With these calibrated actuator inputs, we performed the
finger gait on both the real hardware and simulated hand,
as shown in Figure 4. Using a cube of dimension 60 mm
and mass of 20g, we applied the finger gait trajectory to
both systems. In the simulated system, the object’s 6-axis
pose was logged directly. For the real hardware, we used a
custom real-time pressure controller to actuate the hand (the
same system as in [10]), and measured the 6-axis pose of
the object with April Tags [31] via a webcam viewing from
the top.

Our experiments show that the SoMo simulations produce
similar task-level behavior to the real system for complex
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Fig. 4. The simulation framework is validated against real hardware on a
complex finger gait for continuous rotation of the object within the hand.
A comparison of several key events during a single gait cycle are shown.
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Fig. 5. SoMo produces similar behaviour to real hardware for a complex

in-hand manipulation gait, validating our calibration process. Using a finger
gait for continuous rotation developed in [10], object’s rotation about the
z-axis after ten gait cycles in simulation is within 9% of rotation when the
same gait is performed on real hardware. All other off-axis motion is of
similar orders of magnitude. Line colors indicate x, y, and z-axes.

tasks with multiple contact points. The object’s z-orientation
in simulation tracks the orientation of the real system within
9% of the real hardware after ten gait cycles (50° drift
over the full-scale 582°), as shown in Figure 5. All off-axis
motion is of similar orders of magnitude for both systems
and is very small (x and y positions within 6 mm, x and
y orientations within 0.6°, and z positions within 2mm ).
The deviations in x and y positions are likely due to small
differences in friction and contact between the simulated and
real systems. The simulated z-position, x-orientation, and y-
orientation have especially small magnitudes compared to
the real system. This is likely due to measurement variation
in the real system. Overall, these results validate that a sim-
ple finger-level calibration can produce realistic simulation
behavior for complex tasks.

V. ADDITIONAL DEMONSTRATIONS

To illustrate the power and versatility of the SoMo frame-
work, we apply it to several additional applications ranging
from optimizing soft fingers for pinch grasping, to manipu-
lation, to locomotion. Each case study showcases different
aspects of the framework, and together these demonstrations
solidify the utility of the SoMo framework.

A. Design Exploration: Pinch Grasping

One extremely useful application of a fast simulation
framework is to efficiently perform large-scale design ex-
plorations. With sufficiently-accurate calibration, the SoMo
platform provides an easy way to set up simulations for
multi-dimensional sweeps of design parameters that return
realistic results.

In recent work on precision grasping with soft robotic
grippers, a purely experimental approach was taken to eluci-
date the effect of fingers with independent serial bending
actuators in pinch grasping [6]. One key finding of this
study was that the length ratio of serial bending segments
in a soft finger affects the range of object sizes that can
be grasped precisely. There is a trade-off between strong
power grasping capabilities achieved with short passive distal
segments, and precise pinch grasping achieved with longer
distal segments. Extending this study to find the smallest
distal segment length ratio (DSR) capable of pinch grasping a
wide range of objects would enable the design of fingers that
maximize power grasping strength while ensuring reliable
pinch grasping.

To further understand this phenomenon with high granu-
larity, we simulated the grasping experiments from [6] using
SoMo. We are primarily interested in how the DSR affects
the transition between pinch grasping and power grasping
as a function of the object’s width and the hand’s centering
position with respect to the object. Thus, for a simple grasp-
ing task, we set up a three-dimensional parameter sweep over
centering positions (70 mm to 180 mm, in 5 mm increments),
object widths (10, 20, 40, 60, 100, and 120 mm), and distal
segment ratios (0 to 0.5, in 0.05 increments).

For each set of parameter values, a simple grasping task is
performed with a two-finger soft gripper. First, simulated soft
fingers were calibrated to the real fingers in the study as per
the procedure outlined in Section III-B. We used 20 segments
per finger split into two independently-actuated segments.
The fingers are arranged into a two-fingered antipodal gripper
as in [6], and a target object is spawned at the origin. The
gripper is moved to the desired centering position (with
respect to the object), attempts to grasp the object, and then
lifts the object 75 mm. Grasps are performed by applying
an actuation torque corresponding to 100kPa of pneumatic
pressure in the physical system, while leaving the distal
segments unactuated. We classified the resulting grasp types
based on the contact locations along the fingers.

The results of these experiments indicate that a DSR of
0.20 is the smallest DSR that achieves pinch grasping for
all object sizes. As shown in Figure 6, the pinch grasping
region for DSRs lower than 0.2 does not span all object
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Fig. 6. The smallest DSR that achieves pinch grasping (dark regions) for all object sizes is 0.20, which maximizes pinch-grasping capabilities while also
maximizing power-grasping strength according to [6]. For each DSR, a simulated grasp on a 20 mm-thick box demonstrates the change in finger shape
from fingertips to pinch-grasping. These finger shapes and trends in the resulting grasp data align well with the real hardware, which was tested at three
values of the DSR (indicated with *). The region of acquisition for precision grasping (dark regions) increases in area as a function of the distal segment
ratio (DSR), and the power grasping region (light regions) decreases in area.

widths. This is likely due to the fact that shorter distal
segments have higher stiffnesses, causing grasping instabil-
ities when pinch-grasping. For DSRs higher than 0.2, the
pinch grasping region increases in area, indicating that pinch
grasps become less sensitive to the gripper’s distance behind
the object. However, as shown in [6], the grasping strength
decreases with increasingly long distal segments. Overall,
soft fingers with a DSR of 0.2 strike a balance between
precision grasping capabilities and power grasping strength.
These observations are consistent with the trends observed
in hardware experiments [0].

The first benefit of the SoMo platform for large-scale
design explorations is the reduction in time required to
prepare multiple actuator designs. Setting up this study
in SoMo requires only a few hours. In real soft-robotic
hardware, each design iteration would take approximately
1-2 weeks and require the generation and fabrication of new
mold designs and actuators [6].

The second benefit of the SoMo platform for design
studies is the ability to quickly perform a large set of
experiments with no active user time. In this pinch grasping
study, each single grasping task ran at ~50% real time on
a modern desktop computer (Ubuntu 20.04, 3.5GHz CPU
with four cores). Utilizing all four cores of our machine,
the set of 2310 experiments (each a 7 sec. grasping task)
ran in a total of 2.3 hours. No intervention or monitoring
was required during these experiments. In contrast, running
the same number of experiments on real hardware would
take 4.5 hours of active user participation, since runs must
be performed in sequence - excluding setup time between
experiments. Overall, running the simulations in this study
took approximately 1/4 the time that would be required to
do them with real hardware.

The final benefit of SoMo simulations is that they produce
consistent soft robot behavior, with no added effort required
to monitor all aspects of the experimental environment, in-
cluding phenomena which are difficult to measure in real-life
(e.g., exact contact locations between fingers and objects).

For example, our simulated experiments achieve less vari-
ation in finger and object motion because simulated fingers
are not subject to manufacturing errors or fatigue, and object
locations in the simulated world are controlled precisely.
Should a user want to study the effect of manufacturing
error, fatigue, or other uncertainties on the performance of
soft robots, it is straightforward to introduce respective prob-
abilistic variables into the SoMo simulations. In addition,
PyBullet provides access to the poses of all links in the
fingers and all objects, as well as the contact vectors between
all entities in the environment. Furthermore, measuring the
poses of objects and soft actuators in real environments
usually requires some motion tracking or perception system,
and measuring contact conditions between fingers and object
is usually challenging and prone to measurement noise, or
outright intractable.

B. Design Exploration: In-hand Manipulation with an Actu-
ated Palm

We further used SoMo to gain insights into suitable
designs for a hand that leverages soft, pneumatic fingers and
a rigid palm to achieve dexterous in-hand manipulation. In
such a system, contacting the manipulated object with the fin-
gertips (as opposed to along the manipulators) maximizes the
object motion that can be achieved within one ‘contact-cycle’
(i.e., a period in time during which no regrasping occurs).
Placing the contact points as close to the object’s center of
mass as possible minimizes the effect of destabilizing torques
caused by gravity. An actuated palm with adjustable height
can ensure that objects of varying sizes can be supported
by the palm while the fingertips contact it near its center of
mass.

Ensuring contact between object and palm further facil-
itates in-hand manipulation tasks, as contact with the palm
stabilizes the object and reduces its unconstrained degrees of
freedom, thus lowering the uncertainty in object pose. For
larger palm diameter, this remains true for large deviations
in object pose. This means that a large palm diameter is
generally desirable. However, if the palm is brought closer
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Fig. 7. Simulation of a continuum manipulator arm picking up a basket
ball and placing it into a hoop. a-h) shows sequential screenshots from
the simulation. The actuation torques required to complete this task were
determined heuristically.

towards the fingertips, as is necessary to ensure that small
objects contact both the palm and the fingertips, the palm
must not be too wide, as it would otherwise obstruct the
grasp.

This motivated our development of a soft-robotic manipu-
lation platform that leverages a palm with controllable height
and diameter. In this development process, we explored the
design space of varying palm heights and diameters through
SoMo simulations. A detailed discussion of this exploration,
a description of the final system, and a demonstration of its
capabilities is presented in [32].

C. Customizable Environments: Whole-arm Manipulation

We showcase the flexibility and ease in defining custom
environments by simulating a whole-arm manipulation task
in which a continuum manipulator (consisting of five actua-
tors with two independent degrees of freedom each) is used
to pick up a basket-ball and place it into a hoop, shown
in Figure 7. In this example, the actuator torques used to
envelop and move the basketball were determined by trial
and error. This process is more convenient in (parallelizable)
simulations than with physical hardware for the reasons
outlined in Section V-A.

D. Floating-Base Robots: Snake

Anisotropic Friction

Locomotion Through

SoMo maintains all the invaluable features available in
Bullet, while facilitating the manual or programmatic spec-
ification of continuum robots. In this example, we leverage
PyBullet’s anisotropic friction feature to simulate realistic
snake locomotion - which leverages anisotropic friction at the
snake’s bottom scales [33]. The simulated snake manipulator
consists of 50 segments; an active torque T is applied to
each joint for locomotion. This torque is a function of the
joint position along the actuator x and time ¢, such that
T(x,7) = A(z) sin(kx — ot). To avoid numerical instabilities,
the amplitude A(¢) of this wave is linearly increased from
A(t =0) =0 at the beginning of the simulation to A(t =1) =
A; =1 and held constant afterwards. The resulting snake
poses are shown for isotropic and anisotropic friction in
Figure 8; a snake with isotropic friction is unable to move in
the desired direction with sinusoidal actuation, while a snake
with anisotropic friction consistently moves forward.

time [s]

isotropic friction

anisotropic friction

Fig. 8. Simulated snake locomotion with isotropic (left) and anisotropic
(right) friction. A snake-like continuum manipulator is actuated with a
sinusoidal torque function of the form A(z)sin(kx — wt). The manipulator
pose (gray line) and its start pose (black dotted line) are shown at different
time points. The simulated snake requires anisotropic friction to move in
the desired direction, agreeing with observations of live snakes [33].

VI. CONCLUSIONS AND OUTLOOK

We introduced SoMo, a toolkit that facilitates the prepa-
ration and execution of simulations with soft robots in
complex and varied environments. This is achieved through
a standardized definition of continuum robots and a thin
wrapper that facilitates their instantiation and control in
PyBullet. We show that SoMo is versatile, accurate, and runs
in near real-time for diverse demonstrations including pick-
and-place, dexterous manipulation, and locomotion.

This makes SoMo a valuable tool for the development
of soft robotic systems. Specifically, SoMo provides four
distinct benefits for the large-scale exploration of design
parameters: 1) preparing new actuator designs is many
times faster in simulation; 2) experiments for various design
parameters can be performed in parallel without requiring
active user interaction; 3) it produces consistent results;
and 4) it allows for the monitoring of all experimental
parameters, including those that are hard or impossible to
observe in hardware experiments. In addition, SoMo can be
used to evaluate sensing algorithms, planned or heuristically
determined trajectories, and controller parameters.

We showcased these capabilities through a series of exam-
ples. We demonstrated a complex in-hand manipulation gait
which tracks the behavior of the real hardware within 9%. In
addition, we highlight the value of SoMo in conducting de-
sign exploration studies by exploring the relevant parameters
in two soft-robotic platforms: one developed for precision
grasping with antipodal fingers, the other employing an
active palm with varying height and diameter to achieve in-
hand manipulation with increased dexterity.

In future work, we aim to further refine the agreement be-
tween simulation and experiments through non-linear models
for joint stiffnesses, and a simulation-in-the-loop calibration
routine. This will enable us to leverage SoMo to learn
improvements of and alternatives to our experimentally-
determined control policies for in-hand manipulation in
simulation that can be executed successfully on hardware.
Additionally, we will explore using SoMo for the real-time
validation and correction of motion plans for continuum
manipulator.
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